## 21. BOUNDARY PROBLEM SIMULATION

Principle:

1. Construction of a SIMULINK model for solution of a differential equation $f\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0$ for $y\left(x_{a}\right)=y_{a}$ and a chosen value of $\widehat{y^{\prime}}\left(x_{a}\right)$ in the range $\left\langle x_{a}, x_{b}\right\rangle$
2. Construction of a MATLAB programme to use the SIMULINK model for the initial value problem to evaluate value $\hat{y}\left(x_{b}\right)$ and its use for estimation of the new value of the second initial condition:

$$
\widehat{y^{\prime}}\left(x_{a}\right)=\widehat{y^{\prime}}\left(x_{a}\right)-\alpha\left(\hat{y}\left(x_{b}\right)-y\left(x_{b}\right)\right) \text { for a chosen } \alpha
$$

3. Iterative repetition
\%\%\% Example 21.1: \% Solution of the boundary problem by shooting method
$\% \%$ Using simulation in the SIMULINK environment
$\% \% \%$ Differential equation $f\left(x, y, y^{\prime}, y^{\prime \prime}\right)=y$ ' ${ }^{\prime}+y^{\prime}-x=0, y(0)=10, y(5)=5$
clear all; close all; clc
y1a=input('The choice on initial condition (=-20): ')
\% Simulation
alpha=1.95; y2b=5; M=50;
BoundaryProblem; sim('BoundaryProblem')
for $i=1: M$
$y 1 a=y 1 a-a l p h a *(y . s i g n a l s . v a l u e s(e n d, 1)-y 2 b)$;
sim('BoundaryProblem')
plot(tout,y.signals.values,'Color', [1/M*i 0 0]); grid on; hold on pause(0.2)
end

## BLOCKS

INTE-
GRATION
SUMMATION CONSTANT CLOCK
hold off
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
function $d y=f f(x, y) d y=[-y(1)+x ; y(1)] ;$


## Notes:

1. Depending upon the value of $\alpha$ the whole process can be stable or unstable, monotonic or oscilating
2. The SIMULINK run is controlled by the MATLAB programme

## EXAMPLES 21

21.1 Evaluate solution of a boundary value problem for ordinary differential equations in the SIMULINK environment using the shooting method
21.2 Compare numeric solution obtained in the previous example with the symbolic one

